
1

Does Brain Functional Connectivity Alter
Across Similar Trials During Imaging 

Experiments?

Li Zhu, and Laleh Najafizadeh

Integrated Circuits and NeuroImaging Laboratory

04/29/2015
Signal	and	Information	Processing	Seminar	Series	at	Rutgers



Outline

2

§ Introduction
– Brain Connectivity
– Motivation
– Problem Definition

§ Experiment Setup
– Task Paradigm
– Imaging Technique

§ Processing
– Preprocessing
– Similarity Analysis
– Statistical Testing

§ Results
§ Conclusion



Brain Connectivity
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• Investigates the Networks within the Brain
• Anatomical Connectivity

- looks for axonal connections
- diffuse tensor imaging, tracing techniques

• Functional Connectivity
- looks for statistical similarities between regional time series
- functional neuroimaging techniques, seed-based correlation

• Effective Connectivity
- looks for causal influences between regions of brain
- functional imaging techniques, causal interactions modeling



• Potential for early diagnosis of brain-related diseases
• Autistic Spectrum Disorders

• 1 in 1000 children are diagnosed with Autism
• Specific cause not known (biological, neurological, environmental…)
• Early diagnosis could be a key

• Schizophrenia
• 1 in 100 US population are diagnosed with Schizophrenia
• Abnormal function of neural communication that change the functional connectivity, 

while the anatomical elements remain intact.

Motivation

4

• Understanding the functionality of the brain at the 
network level

http://www.treatoncemonthly.com/about-schizophrenia
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Seed-based correlation
ICA, Wavelet coherence, …

Similarity measurement
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Assumption:	functional	connections	do	not	change	across	repeated	trials
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Variability	in	the	brain	activation	from	trial	to	trial	has	been	
reported	in	previous	studies:

• L.	Holper,	N.	Kobashi,	D.	Kiper,	F.	Scholkmann,	M.	Wolf,	and	K.	Eng,	“Trial-to-
trial	variability	differentiates	motor	imagery	during	observation	between	low	
versus	high	responders:	a	functional	near-infrared	spectroscopy	study.,”	
Behavioural brain	research,	vol.	229,	2012,	pp.	29–40.

• XS	Hu,	KS	Hong,	and	SS	Ge,	“Reduction	of	trial-to-trial	variability	in	functional	
near-infrared	spectroscopy	signals	by	accounting	for	resting-state	functional	
connectivity,”	Journal	of	biomedical	optics,	2013.

• M.	Fox,	A.	Snyder,	J.	Zacks,	and	M.	Raichle,	“Coherent	spontaneous	activity	
accounts	for	trial-to-trial	variability	in	human	evoked	brain	responses,”	
Nature	Neuroscience,	vol.	9,	2005,	pp.	23–25.
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Functional	connections	do	not	change	across	repeated	trials
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Segment 1 Segment 2

● ● ●Testing

Overview	of	the	study
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Task Paradigm

Odd-ball
stimuli

Frequent
stimuli

• Modified Visual Odd Ball Task

- 30 target trials
- 190 frequent stimuli trials
- Presentation time = 50 ms
- ITI = 10 – 12 s
- Left click if see target
- 5 healthy participants

Odd-ball stimuliFrequent stimuli



Imaging Technique

12

• Functional Near-Infrared Spectroscopy

λ1 λ2

SourceDetector

3  c m

 

Overview of neurovascular mechanism

F.	Scholkmann et.	Al.,	“A	review	on	continuous	wave	functional	near-infrared	spectroscopy	and	
imaging	instrumentation	and	methodology.,”	NeuroImage,	vol.	85	Pt	1,	Jan.	2014,	pp.	6–27.
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• Functional Near-Infrared Spectroscopy

- 16 sources, 16 detectors
- 38 channels
- cover prefrontal/visual cortices
- 760 and 830 nm
- Sampling rate: 10.42 Hz
- Spatial Resolution: 3 cm
- Stimuli Sent by E-prime

NIRx Medical Technologies
Model: NIRScout

www.nirx.net/imagers/nirscout
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• Experimental Setup

Optical	
Signals
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§ Extracting Brain Activities
– both Δ𝐻𝑏𝑂% and Δ𝐻𝑏𝑅 were extracted using Modified Beer Lambert Law:

Wavelength	1	 760	nm : 		𝑙𝑛
𝐼:;<=,?@

𝐼A;<BCDEB,?@
= − 𝜖IJKL,?@Δ𝐶IJKL + 𝜖IJO,?@Δ𝐶IJO P L?@

Wavelength	2	 830	nm : 		𝑙𝑛
𝐼:;<=,?L

𝐼A;<BCDEB,?L
= − 𝜖IJKL,?LΔ𝐶IJKL + 𝜖IJO,?LΔ𝐶IJO P L?L

Preprocessing Wavelet	transform	
coherence

Data	organization
&	testing

§ Artifacts Detection/Marking
– Detrending
– Segmentation
– Baseline Correction
– Rapid slope Detection/Marking
– Outlier Detection/Marking

λ1 λ2



Wavelet Transform Coherence
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Preprocessing Wavelet	transform	
coherence

Data	organization
&	testing

• Wavelet transform used for investigating the 
time-frequency features of the non-stationary 
signals:

𝑾𝒙𝒏 𝒏, 𝒔 =
∆𝒕
𝒔

�
\ 𝒙𝒎ᴪ𝟎∗ [(𝒎 − 𝒏)
𝑵

𝒎e𝟏

∆𝒕
𝒔 ]

• Wavelet transform coherence measures the 
cross-correlation between two time series in 
both time and frequency domain:

𝑹𝒙𝒏,𝒚𝒏
𝟐 𝒏, 𝒔 =

|𝑺𝒎𝒐𝒐𝒕𝒉(𝒔o𝟏𝑾𝒙𝒏,𝒚𝒏(𝒏,𝒔))|
𝟐

𝑺𝒎𝒐𝒐𝒕𝒉(𝒔o𝟏|𝑾𝒙𝒏(𝒏,𝒔)|
𝟐)P𝑺𝒎𝒐𝒐𝒕𝒉(𝒔o𝟏|𝑾𝒚𝒏(𝒏,𝒔)|

𝟐)

Simulated signals
Chang	et	al.,	“Time–frequency	dynamics	of	resting-state	brain	connectivity	measured	with	fmri,”	Neuroimage



Wavelet Transform Coherence

• WTC was computed for each channel-pair.

Preprocessing Wavelet	transform	
coherence

Data	organization
&	testing

Channel 1 vs Channel 26

Computing



Data organization & testing
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Preprocessing Wavelet	transform	
coherence

Data	organization
&	testing

• The similarity measurements were organized into a series of matrices.
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Preprocessing Wavelet	transform	
coherence

Data	organization
&	testing

Data organization & testing
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Preprocessing Wavelet	transform	
coherence

Data	organization
&	testing

§ Statistical Testing
- Statistical testing was implemented for each channel-pair.
- Null hypothesis 𝑯q: The measure of functional connectivity from two segments 

are equivalent.
- Non-parametric permutation testing: complete freedom with respect to the 

distribution of the data or their parameters, which could increase the sensitivity of 
the statistical test.

Data organization & testing
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Preprocessing Wavelet	transform	
coherence

Data	organization
&	testing

§ Permutation testing
- No need distributional assumptions
- If 𝑯q is true, shuffling the data won’t affect the test statistics
- Algorithm

- Shuffle data across segments, compute t-value
- Repeat 1000 times, obtain null distribution
- Compute t-value 𝑡q	from the observed datasets
- Compute p-value using 𝑡q with the null distribution

Shuffle
#	1

Shuffle
#	1000

···

Original
Data

Data organization & testing
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Preprocessing Wavelet	transform	
coherence

Data	organization
&	testing

§ Permutation testing
- No need distributional assumptions
- If 𝑯q is true, shuffling the data won’t affect the test statistics
- Algorithm

- Shuffle data across segments, compute t-value
- Repeat 1000 times, obtain null distribution
- Compute t-value 𝑡q	from the observed datasets
- Compute p-value using 𝑡q with the null distribution

Shuffle
#	1

Shuffle
#	1000

···

Data organization & testing

𝑡q

Original
Data
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§ Channel-pairs with Significant variation (p<0.01)
Segment 1 vs Segment 2



Results
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§ Channel-pairs with Significant variation (p<0.05)

Segment 1 vs
whole number of trials

Segment 2 vs
whole number of trials
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Conclusion and Future Work
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§ There exists channel-pairs that revealed significant 
variation between the two temporal segments in their 
functional connections

§ Extracting the characteristics of the brain networks from all 
similar trials in a long-lasting experiment might introduce 
bias in the result

§ The analysis procedure in this study might be extended to 
be used for determining the maximum number of similar 
trials in an experiment for which functional connections 
between brain networks do not vary significantly
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