

Overview

- temporal resolution [1].
- behavior to eventually identify biomarkers of brain-related disorders.
- method can be used for decoding the behavior from imaging data.

Fig. 1: An overview of the study. Features from calcium recordings are used to predict active whisking or no whisking conditions.

Experimental Setup

Widefield Calcium Imaging

- six head-fixed GCaMP6f mice
- entire L & medial portion of the R hemispheres
- 100 x 100 pixels per frame
- sampling rate at 100 frames per second
- 30 ROI locations (5x5 pixels) were selected

Fig. 2: Raw image of neocortical surface (left) and placement of ROIs (right).

Whisker Movement Recoding

simultaneously recorded at 500 f/sec.

Task Paradigm

Fig. 4: 32 blocks with 20 sec rest in between.

Predicting Behavior from Cortical Activity Recorded through Widefield Transcranial Imaging

Li Zhu*, Christian Lee+, David Margolis+ and Laleh Najafizadeh*

*Department of Electrical and Computer Engineering, +Department of Cell Biology and Neuroscience, Rutgers University

This study was supported by Siemens, NSF and NJCBIR.

CONTRACTOR AND A DEPARTMENT OF THE OWNER OF THE

Classification Results

time

	Classification performance across subjects and								
	Classifier	Subject ID	1	2	3	4			
		AC (%)	88.26	90.76	85.09	83.2			
	k NN	SE (%)	66.93	82.87	62.91	75.8			
		SP (%)	93.85	94.71	90.94	87.3			

Classifier	Subject ID	1	2	3	4	5	6	Mean	SD
	AC (%)	88.26	90.76	85.09	83.27	84.12	87.76	86.54	2.86
kNN	SE (%)	66.93	82.87	62.91	75.83	59.96	50.04	66.42	11.68
	SP (%)	93.85	94.71	90.94	87.39	89.71	93.42	91.67	2.82
	AC (%)	90.37	91.28	88.14	83.95	88.35	90.46	88.76	2.67
LR	SE (%)	70.31	87.52	64.37	73.67	64.42	51.59	68.65	11.93
	SP (%)	95.30	93.12	94.45	89.60	94.04	96.37	93.81	2.34
	AC (%)	87.08	90.24	86.83	84.71	86.15	89.87	87.48	2.16
RF	SE (%)	57.65	86.30	59.37	72.29	61.48	49.13	64.37	13.07
	SP (%)	94.30	92.12	94.07	91.45	91.89	96.02	93.31	1.78

Classification performance comparison with other approaches: All ROIs VG-based: the proposed approach.

- Spike-based: classification is done based on the number of spikes.
- primary somatosensory cortex (ROI-20) VG-based: classification is done
- based on VGs from ROI associated with only primary somatosensory cortex.

Subject	1	2	3	4	5	6
AC (All ROIs VG-based)	0.90	0.91	0.89	0.85	0.88	0.90
AC (Spike-based)	0.87	0.87	0.84	0.83	0.86	0.90
AC (ROI-20 VG-based)	0.79	0.89	0.80	0.84	0.85	0.87
SE (All ROIs VG-based)	0.69	0.88	0.63	0.75	0.62	0.50
SE (Spike-based)	0.58	0.77	0.44	0.71	0.55	0.34
SE (ROI-20 VG-based)	0.17	0.86	0.23	0.70	0.47	0.29
SP (All ROIs VG-based)	0.95	0.93	0.96	0.91	0.94	0.96
SP (Spike-based)	0.95	0.91	0.94	0.89	0.94	0.98
SP (ROI-20 VG-based)	0.95	0.91	0.96	0.91	0.93	0.96

Conclusion

- Widefield imaging was used to record cortical activity in six GCaMP6f mice during active whisking and no whisking.
- A VG-based approach was proposed for predicting the behavior from recorded calcium signals.
- We demonstrated that temporal characteristics of calcium recordings can be utilized to predict behavior and it outperforms spike-based methods. Future work include considering a more diverse range of behavior.
- **References**

1] Steinmetz, Nicholas A., et al. "Aberrant cortical activity in multiple GCaMP6-expressing transgenic mouse lines." bioRxiv (2017): 138511 [2] Sannino, Speranza, et al. "Visibility graphs for fMRI data: multiplex temporal graphs and their modulations across resting state networks." Network Neuroscience (2017).

classifiers.