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Neuroimaging Techniques
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§ Human brain: ~ 100 billion neurons, 100,000 Miles of blood vessels

§ Diagnosis of brain-related diseases requires variable brain imaging tools
§ Autistic Spectrum Disorders: 1 in 1000 children are diagnosed with Autism

§ 1 in 100 US population are diagnosed with Schizophrenia

Park, Hae-Jeong et al., 2013



L. Zhu, May, 2016

Neuroimaging Techniques
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Structural/ Functional

https://en.wikipedia.org/wiki/Magnetic_resonance_imaging#/media/File:T1t2PD.jpg

� Structural brain imaging
� Study the physical structure of the brain.
� Magnetic Resonance Imaging (MRI)

� Functional brain imaging
� Study the brain functionality.
� Functional Magnetic resonance imaging (fMRI) MRI

fMRI

Leung, et al. "An event-related functional MRI study of the Stroop color word interference task." Cerebral cortex 10.6 (2000): 552-560.
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Neuroimaging Techniques
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Invasive/ Non-invasive

Left from “https://en.wikipedia.org/wiki/Electrocorticography#/media/File:Intracranial_electrode_grid_for_electrocorticography.png”

� Non-invasive brain imaging
� No open-skull surgery is needed
� Electroencephalography (EEG)
� fMRI
� fNIRS

� Invasive brain imaging
� Superior spatial resolution while 

requires open-skull surgery

� Electrocorticography (ECoG)

ECOG EEG
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Neuroimaging Techniques

6http://ilabs.washington.edu/future-use-meg

Direct/ Indirect measure
� Direct measure of neuronal activity 

� EEG
� MEG

� Indirect measure of neuronal activity 
� fMRI
� fNIRS

EEG fNIRS
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Neuroimaging Techniques
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Temporal and Spatial resolution of functional brain imaging tools

Multi-Modal Brain Imaging
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� Combining multiple imaging modalities-monitor brain function at different levels
� Direct measure of neuronal activity: ECoG, EEG, MEG
� Indirect measure of neuronal activity: PET, fMRI, fNIRS

� Advantage:

� enhance temporal/spatial resolutions
� Investigate brain function from different perspectives

Neuroimaging Techniques

Multi-Modal Brain Imaging
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Neuroimaging Techniques

Naseer, Noman et al., 2015

Functional Near-Infrared Spectroscopy (fNIRS)
� Diffused photons travel between source and detector

� Depth depends on the distance between source and detector

λ1 λ2
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Neuroimaging Techniques
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Neuroimaging Techniques

Block Design
Task TaskRest

Event-Related Design
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Problem Statement

§ fNIRS signal is contaminated by the physiological and measurement noise
§ Heart rate (~1 Hz)
§ Respiration (~0.3 Hz)
§ Mayer waves (~0.1 Hz)
§ Very low frequency oscillation (<0.1 Hz)

§ The frequency bands of some interference components coincide with the
task-evoked components, where filtering cannot be performed

§ Conventional-based averaging is a routing operation for preprocessing to
increase signal-to-noise-ratio

Tachtsidis, Ilias et al., 2016
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Problem Statement

§ Denote !" = [%& 1 ,))), %& * ] as the	-./ hemodynamic signal of a group of 0 signals
that occurs in response to a certain external stimulus

§ !" can be decomposed as a summation of two components
%& 1 = ℎ 1 + 4& 1 ,	 1 = 1,2,))), *.

where ℎ 1 : the task-evoked hemodynamic response.
4&(1): noise

§ Conventional-based averaging is performed by

9 1 = ∑ %&(1);
&<=
0

Conventional-based Averaging
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Problem Statement

§ The invariant assumption on ℎ " in the brain responses does not always hold

§ Trial-to-trial variability of the brain response is observed in EEG measurements

§ Hemodynamic signals are indirect measure of the neural activities, via neurovascular
coupling. Therefore, it is expected that they also experience trial-to-trial variable
latency

§ Performing conventional-based averaging might lead to a blurring (or loss) of peaks
and valleys in the averaged signal

Problems with Conventional-based Averaging
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Literature Review

Selective Averaging

§ Goal: task-related signals in some individual blocks/trials may not be
obtained, and should be excluded from the averaging process

§ Visually inspection



L. Zhu, May, 2016 19

Literature Review

Linear Alignment Averaging

§ Alternative model for measured signals
!" # = ℎ # +	∆τ* + +* # ,	 # = 1,2,///, 0

§ Methods for estimating the latency exists
§ Cross-correlation
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Literature Review

How about scenarios where individual
blocks/trials experience non-linear distortion?
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Literature Review

Non-linear Alignment Averaging
§ Aligning using dynamic time warping
§ Application: speech processing or pattern recognition

Aligning point-to-point

Non-linear alignment
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Literature Review

Non-linear Alignment Averaging
§ Aligning using dynamic time warping
§ Application: ERP, speech processing or pattern recognition

Aligning Averaging
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DTW-based Averaging

Strategies Used

Original Averaged Original Averaged

Sequential Alignment AveragingPair-wise Alignment  Averaging

L. Gupta et al., 1996, V. Niennattrakul et al., 2007
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DTW-based Averaging

Strategy Used in This Study

Simultaneous Alignment Averaging

F. Petitjean et al., 2011



L. Zhu, May, 2016

Outline

2
5

� Introduction
� Problem Statement
� Averaging Strategies - Prior Work
� Framework for DTW-based Averaging
� Experiments and Results
� Conclusion



L. Zhu, May, 2016 26

DTW-based Averaging

Cost matrix

Define reference signal

Optimal alignment path

Aligned averaging

Between individual signal !" and #

For !", find optimal alignment path to #

Find the output signal based on the
optimal alignment paths

Define a reference signal #

Overview
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DTW-based Averaging
Procedure

Reference 
signal Cost matrix Optimal 

alignment path
Aligned 

averaging

§ Denote !" = [%& 1 ,))), %& * ] as the ,th hemodynamic signal of a group of -
signals that occurs in response to a certain external stimulus.

§ In this study, we consider the “reference” signal to be the point-by-point
arithmetic average of all - signals denoted as . = / 1 , / 2 ,))), / * ,

where / 1 = ∑ 34(6)849:
; , 1 = 1,2,))), *.
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DTW-based Averaging
Procedure

Reference 
signal Cost matrix Optimal 

alignment path
Aligned 

averaging

§ Normalize !	and	#$ for each % = 1,2,***, +
#$, = #-./(#1)

3#-
,          !, = !./(4)

3!
.

§ For each #$, , establish the Cost Matrix 56
7$ 8, 9 = (:, 8 − <$, 9 ) =

Signal #1,

time1 N

Si
gn

al
 !,

1
N

tim
e
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DTW-based Averaging
Procedure

Reference 
signal Cost matrix Optimal 

alignment path
Aligned 

averaging

§ To find !"
#$% = [(),+++, (,,+++, (-]/, 0 ≤ 2 ≤ 20 − 1,where (, = 6,, 7, , 		1 ≤ 6,, 7, ≤ 0, 6,

and 7, are the indices on the signals 9: and ;": associated to the <%= path step,
respectively

§ We seek the solution for the following problem

minimize
CD

∑ F"(6 < , 7(<))-
,I) ,

time1 N

1
N

tim
e

Subject to the following constraints:
• Monotonicity alignment
• Continuity
• End-point alignment

Signal ;J:

Si
gn

al
 9
:



L. Zhu, May, 2016 30

DTW-based Averaging
Procedure

Reference 
signal Cost matrix Optimal 

alignment path
Aligned 

averaging

Constraints:

§ Monotonicity alignment: regularizes the alignment path does not go
back in time index

! " ≥ ! " − 1 ,	and ((") ≥ ((" − 1)

Signal +,

time1 N

Si
gn

al
 -

1
N

tim
e
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DTW-based Averaging
Procedure

Reference 
signal Cost matrix Optimal 

alignment path
Aligned 

averaging

Constraints

§ Continuity: regularizes the alignment path does not jump in time index
! " − ! " − 1 ≤ 1, and ' " − '(" − 1) ≤ 1

time1 N

1
N

tim
e

Signal *+,

Si
gn

al
 -,
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DTW-based Averaging
Procedure

Reference 
signal Cost matrix Optimal 

alignment path
Aligned 

averaging

Constraints

§ End-point alignment: requires the alignment path to start at the bottom
left and ends at the top right

! 1 = $ 1 = 1, and ! & = $ & = '

time1 N

1
N

tim
e

Signal ()*
Si

gn
al

 +*
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DTW-based Averaging
Procedure

Reference 
signal Cost matrix Optimal 

alignment path
Aligned 

averaging

Update !" according to #$
%&'

§ If the index represented by ( ) is unique in #$
%&',

*$ +,-./01 m = *$ 4 )

§ If the index represented by (, is not unique in #$
%&',

*$ +,-./01 m = average of all *$ 4 ) ’s corresponding to (()) Signal 	!8

Signal 	!8

Signal 9
Si

gn
al

 9

time1 N

1
N

tim
e

time1 N

Example
Assume that #$

%&' = [ 1,1 , 2,2 , 2,3 , 2,4 , 3,5 ,AAA, B − 1,B − 1 , B,B ] E.

Then !$(+,-./01) = *$ 1 ,
FG H IFG J IFG K

J
,AAA, *$ B .

Index on 9 Index on *
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DTW-based Averaging
Procedure

Reference 
signal Cost matrix Optimal 

alignment path

§ After determining !"($%&'()*) for all , = 1,2,111, 2, the DTW-based average is obtained 
as

!34567896:8; =
∑ !=(>?@ABCD)
E
=FG

H

Aligned 
averaging
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Experimental Studies

§ Experiment I
§ Block-design experiment - N-back tasks
§ Investigate detection power in identifying active regions

§ Experiment II
§ Event-related design experiment - modified visual odd-ball task
§ Identify brain regions sensitive to the contrast effect

§ Simulation Study
§ Data sets simulated based on the same task as Experiment II
§ Ground truth is known
§ Investigate false positive rate in identifying brain regions sensitive to the 

contrast effect
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Experiment I

N-Back (N=0, 2, 3)-Working Memory

§ 4 blocks for each N-Back
§ 15-stimuli in each block
§ ITI=2 s
§ Left click if see target

0-Back 2-Back 3-Back
1 5 2 5 3 5

20 s 20 s

…

(a) (b)

Task Paradigm: Block Design
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§ 10 healthy volunteers
§ BIOPAC fNIR system
§ 4 sources, 16 detectors
§ 16 channels
§ Cover prefrontal cortex
§ 730 nm and 850 nm
§ Sampling rate: 2 Hz
§ Spatial Resolution: 2.5 cm

0-Back 2-Back 3-Back
1 5 2 5 3 5

20 s 20 s

…

(a) (b)

Experiment I

Data Acquisition
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§ Extracting Brain Activities
– both Δ"#$% and Δ"#& were extracted using Modified Beer Lambert Law:

Wavelength	1	 760	nm : 		78
9:;<=,?@

9A;<BCDEB,?@
= − HIJKL,?@ΔMIJKL + HIJO,?@ΔMIJO P L?@

Wavelength	2	 830	nm : 		78
9:;<=,?L

9A;<BCDEB,?L
= − HIJKL,?LΔMIJKL + HIJO,?LΔMIJO P L?L

λ1 λ2

§ Band-pass filtering
§ Artifacts rejection

–Rapid slope
–Outlier
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Analysis Procedure

Experiment I

Preprocessing

Activation 
Detection

DTW-based 
Averaging

Activation 
Index (AI)

Activation 
Detection

Conventional 
Averaging

Activation 
Index (AI)

C
on

tro
l M

et
ho

d

Pr
op

os
ed

 M
et

ho
d

Comparison
Am

pl
itu

de

Temporal window

Conventional- and DTW-based averaging
techniques were conducted on Δ"#$% signals
across blocks separately.

• Extraction of "#$%
• Filtering
• Baseline correction
• Segmentation

Channel-wise one sample t-tests were
performed on AI with null hypothesis being the
region is not active.
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Detection Power
§ Statistical activation map for N-back tasks.

0-Back 2-Back 3-Back

Conventional-Based
Averaging

Conventional-Based
Averaging (Threshold)

DTW-Based Averaging

DTW-Based Averaging
(Threshold)

(a)

(b)

t-Value
Threshold:

Experiment I
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Detection Power
§ Statistical activation map thresholded by the significant level of p < 0.001.

Experiment I

0-Back 2-Back 3-Back

Conventional-Based
Averaging

Conventional-Based
Averaging (Threshold)

DTW-Based Averaging

DTW-Based Averaging
(Threshold)

(a)

(b)

t-Value
Threshold:

0-Back 2-Back 3-Back

Conventional-Based
Averaging

Conventional-Based
Averaging (Threshold)

DTW-Based Averaging

DTW-Based Averaging
(Threshold)

(a)

(b)

t-Value
Threshold:

M. Glabus et al., 2003
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CNR

§ Contrast-to-noise-ratio (CNR): a metric used for quantifying the signal-to-noise-ratio.

§ !"# = |&'() *+, -&'() ./. |
0(1 *+, 20(1(./.) .

5+,: the signal corresponding to 5-20 s after the presentation of the first stimulus of a block.
./.: the signal corresponding to 10-15 s after the presentation of the last stimulus of a block.

Experiment I
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Mean CNR computed from DTW-based averaging is significantly higher for all
conditions.

CNR

P < 0.01 P < 0.01

Experiment I
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Experimental Studies

§ Experiment I
§ Block-design experiment - N-back tasks
§ Investigate detection power in identifying active regions

§ Experiment II
§ Event-related design experiment - modified visual odd-ball task
§ Identify brain regions sensitive to the contrast effect

§ Simulation Study
§ Data sets simulated based on the same task as Experiment II
§ Ground truth is known
§ Investigate false positive rate in identifying brain regions sensitive to the 

contrast effect
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Surprise
stimuli

Frequent
stimuli

Modified Visual Odd Ball Task: Attention, Surprise Effect

§ 30 target trials
§ 190 frequent stimuli trials
§ Presentation time = 50 ms
§ ITI = 10 – 12 s
§ Left click if see target
§ 5 healthy participants

Odd-ball stimuliFrequent stimuli

Experiment II

Task Paradigm: Event–Related Design
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§ 6 healthy volunteers
§ NIRx NIRScout system
§ 16 sources, 16 detectors
§ 38 channels
§ cover prefrontal/visual cortices
§ 760 and 830 nm
§ Sampling rate: 10.42 Hz
§ Spatial Resolution: 3 cm
§ Stimuli Sent by E-prime

Experiment II

Data Acquisition
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Analysis Procedure

Experiment II

Preprocessing

Activation 
Detection

DTW-based 
Averaging

!"#$%% = !"'()*+' − !"-.-/'()*+'

Activation 
Detection

Conventional 
Averaging

!"#$%% = !"'()*+' − !"-.-/'()*+'

C
on

tro
l M

et
ho

d

Pr
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ed
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et
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d

Comparison
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Experiment II

[ [
]]

Exemplary recorded signals from a given channel for two conditions
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Experiment II

Red channels are specifically sensitive to rare interruption ( p< 0.05)

(a)

(b)

Conventional-based
Averaging

DTW-based
Averaging
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Experimental Studies

§ Experiment I
§ Block-design experiment - N-back tasks
§ Investigate detection power in identifying active regions

§ Experiment II
§ Event-related design experiment - modified visual odd-ball task
§ Identify brain regions sensitive to the contrast effect

§ Simulation Study
§ Data sets simulated based on the same task as Experiment II
§ Ground truth is known
§ Investigate false positive rate in identifying brain regions sensitive to the 

contrast effect
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Simulation Study

§ Datasets are simulated under the framework of visual odd ball task

§ 50-channel fNIRS recordings
§ 10 channels are sensitive to the contrast (target > non-target) effect
§ 40 channels are sensitive to both conditions, but are not sensitive to the

contrast effect
§ 20 target trials
§ 150 non-target trials
§ 40 subjects

§ Objective: identify the 10 channels sensitive to the contrast effect

Simulation Platform
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Simulation Study

§ The hemodynamic response is simulated based on the widely used double gamma
function [61]

!"# $, &', &(, )', )(, *', *( = *'(-./01 )
31456.(31/01)(-.01) − *((-./09 )

39456.(39/09)(-.09)�
where *' and *( model the amplitude of the undershoot and the peak,

)' and )( model the shape of the gamma functions,
&' and &( model the width of the gamma functions
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Simulation Study

§ The hemodynamic response is simulated based on the widely used double gamma
function [61]

!"# $, &', &(, )', )(, *', *( = *'(
-./

01

)
31456

.(31/01)(-.01) − *((
-./

09

)
39456

.(39/09)(-.09)�

where *' and *( model the amplitude of the undershoot and the peak,
)' and )( model the shape of the gamma functions,
&' and &( model the width of the gamma functions.

§ &', &(, and : : normally distributed random variables.

§ ;<=>? = 1.03×;<=E>.

§ FG" = 10	:I
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Simulation Study
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Conventional-based Averaging
DTW-based Averaging (Ref.: mean)

§ ROC curves for conventional- and DTW-based averaging

§ DTW-based averaging outperforms conventional averaging
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Simulation Study

§ HRF was chosen as the reference signal

§ DTW-based averaging outperforms conventional averaging
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Conventional-based Averaging
DTW-based Averaging (Ref.: HRF)
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§ We investigated the problem of accurately localizing active regions in the
brain using fNIRS-recorded time series

§ Due to the existence of trial-to-trial variability and variable latencies, the
use of conventional averaging procedures may lead to loss of information
in the averaged signal

§ An averaging framework utilizing DTW technique is presented, aiming to
improve the averaging accuracy of fNIRS signals by taking into account
the nonlinearities in the alignment of signals to be averaged

§ The averaging framework is extensively tested on real data, from block
design and event-related design experiments, as well as on simulated
data. It is shown that DTW-based averaging technique significantly
outperforms the conventional-based averaging
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