

have a second and the second and the

Rutgers

Predicting Behavior from Cortical Activity Recorded through Widefield Transcranial Imaging

Li Zhu*, Christian Lee+, David Margolis+ and Laleh Najafizadeh*

*Integrated Systems and NeuroImaging Lab., Department of Electrical and Computer Engineering *Department of Cell Biology and Neuroscience

Rutgers University, Piscataway, NJ 08854, USA

This work was supported by Siemens, NSF, NJCBIR and NIH.

05/16/2017

Outline

Introduction Background Motivation Overview

• Experiment

- Setup
- Data Collection

Analysis

- Visibility Graph
- Feature Selection
- Classification

Results and Conclusions

Widefield Calcium Imaging

- using GCaMP6f mice
- capable of imaging neural populations over large portions of the cerebral cortex
- enables longitudinal recording of neural activity
- offers high temporal resolution
- a powerful tool for studying the relationship between brain activity and behavior

Minderer, Matthias, et al. "Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator." *The Journal of physiology* 590.1 (2012): 99-107.

Madisen, Linda, et al. "Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and 3 performance." *Neuron* 85.5 (2015): 942-958.

Decoding Behavior

- goal: inferring brain states/behavior from neuroimaging data

- many applications
 - helps in understanding the brain function and relationship to behavior
 - helps in developing predictive models of brain function
 - helps in identifying biomarkers of brain-related disorders
- several challenges
 - most existing work have looked at functional specificity
 - spatial information will aid only to decode few "distinct" cognitive processes
 - brain is dynamic and time variant

Decoding Behavior from Calcium Recordings

- can *temporal* characteristics of calcium recordings be used to predict behavior?
- behavior
 - active whisking (AW)
 - no whisking (NW)

Overview

Overview

Outline

Introduction

- Background
- Motivation
- Overview

Experiment

- Setup
- Data Collection

Analysis

- Visibility Graph
- Feature Selection
- Classification

Results and Conclusions

Experimental Setup

High-speed CMOS camera 100 FPS

Lens 50mm/f0.95

535/40 nm

emission filter

DC-Blue

dichroic mirror

Lens

25mm/f0.95

Whisker camera

500 FPS

Widefield Calcium Imaging head-fixed GCaMP6f mice entire left and mediate right hemisphere - 100 x 100 pixels per frame sampling rate at 100 frames per second 479/40 nm - 30 ROI locations (5x5 pixels) were selected excitation filter 460 nm LED 5 4 3 78 6 9 12 11 10 Anterior 15 1 16 17 20 19 21 26 27 2 Lateral 28 29 23 30 2 mm Emx1-cre: Camk2a or Rosa26-tta; TITL-GCaMP6f Whisker Movement Recoding

- simultaneously recorded at 500 frames per second

Data Collection

• Paradigm

- 32 blocks with 20 second rest in between
- 6 mice participated

Data Collection

Paradigm

- 32 blocks with 20 second rest in between
- 6 mice participated

TGERS

Outline

Introduction

- Background
- Motivation
- Overview

• Experiment

- Setup
- Data Collection

Analysis

- Visibility Graph
- Feature Selection
- Classification

Results and Conclusions

Maps a Time Series into a Graph

- each point in time serves as a node in the graph
- nodes h and l are connected if for any point p (h), we have

$$x(p) < x(l) + [x(h) - x(l)][\frac{t_l - t_p}{t_l - t_h}]$$

- Reveals Dynamic Properties of Time Series
 - periodic signals result in regular graphs
 - fractal time series result in scale-free networks

Lacasa, Lucas, et al. "From time series to complex networks: The visibility graph." *Proceedings of the National Academy of Sciences* 105.13 (2008): 4972-4975.

- Topological Metrics of VG Quantify Characteristics of Time Series
 - edge density (K):
 - related to number of existing edges in the graph

$$K = \frac{1}{N(N-1)} \sum_{i,j} a_{i,j}$$

- averaged clustering coefficient (C):
 - average of local clustering coefficients

$$C = \frac{1}{N} \sum_{i=1}^{N} C_i = \frac{1}{N} \sum_{i,j,l} \frac{a_{ij} a_{il} a_{jl}}{K_i (K_i - 1)}$$

- characteristic pathlength (L):
 - averaged shortest pathlength between all node pairs

Kim, Dae-Jin, et al. "Longer gestation is associated with more efficient brain networks in preadolescent children." *Neuroimage* 100 (2014): 619-627.

• Procedure

- calcium recordings were first segmented using sliding windows
 - window length: 2 s
 - window step: 0.5 s
- VG was constructed for each segment and each ROI
- graph metrics were extracted from each VG

20

GERS

• Procedure

- calcium recordings were first segmented using sliding windows
 - window length: 2 s
 - window step: 0.5 s
- VG was constructed for each segment and each ROI
- graph metrics were extracted from each VG

GERS

• Procedure

- for each block, and each ROI, three new time series are obtained
- at each point, for each ROI, seven types of features are extracted
 - individual metrics: K or C or L
 - ► joint metrics: K&C or K&L or C&L or K&C&L
- feature vectors were formed by stacking selected graph metrics across ROIs

RS

Classifier

- logistic regression with *l*₂ regularization

Classification Experiments

- 10-fold cross validation: data were randomly partitioned into ten subsamples
- nine subsamples were used to estimate the model parameters
- remaining subsample was used to evaluate the performance
- this procedure was repeated ten times

Evaluation Measures

- Accuracy
 - measure of correctly identified samples
- Sensitivity
 - measure of correctly identified AW samples
- Specificity
 - measure of correctly identified NW samples

Outline

Introduction

- Background
- Motivation
- Overview

• Experiment

- Setup
- Data Collection

Analysis

- Visibility Graph
- Feature Selection
- Classification

Results and Conclusions

Results

Overall

- classification experiments delivered better-than-naive-classifier results
- Features
 - edge density delivered the best performance
 - results suggest that edge density carries the strongest discriminatory information among the three metrics

	Subject						Moon	CD
	1	2	3	4	5	6	Mean	50
Accuracy (%)	89.66	88.75	88.14	84.70	88.39	91.83	88.59	2.33
Sensitivity (%)	72.36	89.54	67.53	75.89	68.30	55.58	71.53	11.18
Specificity (%)	94.02	88.37	93.64	89.43	93.89	97.49	92.81	3.36
Feature	Κ	K&C	K&C&L	K&C	K&C	K&C		

Conclusions

- Widefield Imaging Was Used to Record Cortical Activity in GCaMP6f Mice during Active Whisking and No Whisking
- A VG-based Approach Was Proposed for Predicting the Behavior from Recorded Calcium Signals
- We Demonstrated that Temporal Characteristics of Calcium Recordings can be Utilized to Predict Behavior
- Future Work Include Considering a More Diverse Range of Behavior

Thank You!